你想要测量什么?
什么是你真正要测量的?换句话说,你想做什么?你希望得到什么?你打算怎么处理数据?加速度传感器可以监测振动,提供原始振动数据,而振动变送器提供均方根(RMS)值。分析原始振动数据是有用的,因为它包含了所有振动信号的信息,真实的峰值振幅和振动频率。因为RMS总值或峰值是连续4-20 mA信号,在如PLC,DCS,SCADA系统和PI控制系统中非常有用。一些应用程序同时使用两种信号。通过确定应用程序所需的各种信号,可以大大缩小搜索范围。另外,你测量振动是用加速度还是速度或位移?你有没有考虑一些工业传感器可以同时输出振动和温度?后,一些现场应用,如立式泵,监测一个以上的轴振动。您的现场应用是否需要单轴,双轴或三轴测量?
振幅有多大?
被测振动的振幅或范围,决定使用哪种范围的传感器。典型的加速度传感器灵敏度100 mV/ g,标准应用(50g范围)和500mv/g的低频率或低幅值的应用(10g范围)。 一般工业应用的4-20 mA变送器通常使用0-1 in/ s或0-2in/s的范围。
振动传感器接收原理
振动传感器在测试技术中是关键部件之一,它的作用主要是将机械量接收下来,并转换为与之成比例的电量。由于它也是一种机电转换装置。所以我们有时也称它为换能器、拾振器等。
振动传感器并不是直接将原始要测的机械量转变为电量,而是将原始要测的机械量做为振动传感器的输入量,然后由机械接收部分加以接收,形成另一个适合于变换的机械量,后由机电变换部分再将变换为电量。因此一个传感器的工作性能是由机械接收部分和机电变换部分的工作性能来决定的。
1、相对式机械接收原理由于机械运动是物质运动的简单的形式,因此人们先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。传感器的机械接收原理就是建立在此基础上的。相对式测振仪的工作接收原理是在测量时,把仪器固定在不动的支架上,使触杆与被测物体的振动方向一致,并借弹簧的弹性力与被测物体表面相接触,当物体振动时,触杆就跟随它一起运动,并推动记录笔杆在移动的纸带上描绘出振动物体的位移随时间的变化曲线,根据这个记录曲线可以计算出位移的大小及频率等参数。由此可知,相对式机械接收部分所测得的结果是被测物体相对于参考体的相对振动,只有当参考体不动时,才能测得被测物体的振动。这样,就发生一个问题,当需要测的是振动,但又找不到不动的参考点时,这类仪器就无用武之地。例如:在行驶的内燃机车上测试内燃机车的振动,在地震时测量地面及楼房的振动……,都不存在一个不动的参考点。在这种情况下,我们必须用另一种测量方式的测振仪进行测量,即利用惯性式测振仪。
2、惯性式机械接收原理惯性式机械测振仪测振时,是将测振仪直接固定在被测振动物体的测点上,当传感器外壳随被测振动物体运动时,由弹性支承的惯性质量块将与外壳发生相对运动,则装在质量块上的记录笔就可记录下质量元件与外壳的相对振动位移幅值,然后利用惯性质量块与外壳的相对振动位移的关系式,即可求出被测物体的振动位移波形。
振动传感器,或称加速度计,作用主要是将振动的机械量转换为与之成比例的电量输出。传感器的敏感元件由精心选择的具有优良性能的压电陶瓷制成, MMF致力于研发生产可用于不同领域应用的振动传感器至今已经有63年,产品范围广泛,包括:电荷和IEPE型加速度传感器、便携式手持测振仪表、VM系列(建筑、船舶、人体等)振动分析软、振动校准仪和机监控设备。 MMF的振动传感器得到国际公认。主要应用于工业自动化控制、航空航天、船舶、汽车工业、化工、钢铁、能源等。